
52 The Delphi Magazine Issue 60

Focus Made Easy
by Hart Kerbel

Afew years ago I found myself
working on applications in

which the users would often need
to look to and from the monitor,
often as they entered information.
To help them quickly find where
they are on the screen I decided to
highlight the currently focused
control, changing the color to
yellow where appropriate.

This quickly became tedious and
error prone to implement control-
by-control: I quickly concluded
this was an opportunity to leverage
Delphi’s strength and create a
reusable control. The final result is
CtlFocus, a non-visual control that
makes it a snap for developers to
add this functionality. This article
describes the crafting of CtlFocus.

Analysis
What is required is a mechanism
that highlights the focused control
in such a way as to make it easy for
the user to quickly locate it on the
screen. When the control loses
focus it must revert back to its non-
focused state. This also holds true
when the parent form loses focus.

The solution must be easy, reli-
able and reusable. Developers
must also be able to override and
extend the base functionality with
a minimum of work.

Design
To make it as easy as possible for
developers we’ll package our pro-
ject as a non-visual VCL control.

The default behavior will be to
alter the color when the control
gains focus and revert back to the
initial color when focus is lost. If
the current control does not have a
published Color property then the
appearance is not altered.

To allow developers to extend
the functionality of CtlFocus its key
behaviors are encapsulated in vir-
tual methods. Each method under-
takes one well-defined task, making
it easy to understand how to use
our objects and to create descen-
dant objects.

For example, the method
RestoreCtrlState is responsible for
restoring a control to its non-
focused appearance: it’s called
whenever a change in focus is
detected. It is conceivable that in
the future developers will need to
modify this behavior. Consider
how awkward this would be if
RestoreCtrlState performed other
duties such as, for example, setting
the appearance of the newly
focused control (as performed by
SetColorProperty). If it becomes
difficult to override functionality
developers will have to start dupli-
cating and hacking code. This is
both time consuming and error
prone, it may very well be easier
for them to abandon the control
outright and find another solution.

As important as inheritance is, it
is often overkill if all we need to do
is slightly modify the behavior of
our control. Let’s say we have

a TEdit control that represents
sensitive information. Instead of
using the default color of yellow we
decide to use red. Creating a
descendant control is not reason-
able for this one special case,
because it would have to check
specifically for the name of the
control we want to color red.
Hardly a reusable approach.

So, how do we accommodate
special cases? We provide events
at just the right time and with just
the right information. CtlFocus has
two events, OnAfterFocus and
OnBeforeFocus, both defined as:

TNotifyColorChangeEvent =
procedure (Sender: TObject;
const AComponent: TComponent;
var ANewColor: TColor;
var AChangeColor: Boolean)
of object;

Table 1 describes the parameters.
OnBeforeFocus is triggered just
before a control receives focus.
OnAfterFocus is triggered just as a
control loses focus.

Figure 1 is a simple form, shown
in design mode, with a CtlFocus
and three visible controls: two edit
boxes and a checkbox. Listing 1 is
an example of how the OnBefore-
Focus and OnAfterFocus events may
be coded.

Figure 2 shows how the form
appears when Edit1 is focused.
Since the default behavior is not
modified the color is set to yellow.
In Figure 3 Edit2 is focused. Note
how its color is red. That is
because in the OnBeforeFocus event
we explicitly check to see if Edit2 is
about to gain focus. If it is then we
override the color:

Parameter Name Type Description

Sender TObject The object that generated the event. Not
normally used.

AComponent TComponent A reference to the component that is
about to have its appearance modified. The
developer may use this to change attributes of
the control other than the color.

ANewColor TColor The color to use for highlighting. On entry into
the event handler this will be set to
the value of the FocusedColor property.
The color may overridden on a case-by-case basis
by referring to the AComponent parameter.

AChangeColor Boolean Default value is true. Setting it to false instructs
CtlFocus not to change the color.

➤ Left: Table 1 ➤ Figure 1

August 2000 The Delphi Magazine 53

if AComponent = Edit2 then
ANewColor := clRed

The coding behind Figure 4 is
slightly more complicated: see
Listing 2. For all instances of
TCheckBox and its descendants
we’re not changing the color but
setting the text to bold underlined.
Notice that we defeat CtlFocus’
default behavior by setting
AChangeColor to False. We undo the
modifications to the font in the
OnAfterFocus event, see Listing 3.

Listing 1 displays the complete
source for the form. We have
designed a component that will be
flexible and easy to extend. Now we
need to implement it.

Implementation
Because CtlFocus is non-visual it
descends from TComponent. This
gives us just what we want.
TComponents show up in the compo-
nent pallet, may be manipulated at
design-time and are automatically
saved with the parent form.

The tricky part in implementing
CtlFocus is determining when a
control is about to lose or gain
focus. We need to find some events
or messages that we can tap into.

As is often the case there are
various choices. One of them is to
hook into the Screen object’s
OnActiveControlChange and OnAct-
iveFormChange events. Remember
that each instance of our control
will need to hook into these events,
in essence creating a chain of event
handlers. We must be sure to call
the event handler that was
assigned before we hooked in. This
means every event handler in the
chain will be called even when the

host form is not active. The bottom
line is that we must add a check to
make sure that the control in ques-
tion and the active event handler
belong to the same form. Hooking
into the OnActiveControlChange
event looks like:

FSuperOnControlChangeEvent :=
Screen.OnActiveControlChange;

Screen.OnActiveControlChange :=
ActiveControlChange;

FSuperOnControlChangeEvent holds
a reference to the event handler
before we hooked into it. Active-
ControlChange is our new event
handler as shown in Listing 4.

...
else if AComponent is TCheckBox then begin
AChangeColor := False;
TCheckBox(AComponent).Font.Style :=
TCheckBox(AComponent).Font.Style + [fsbold] + [fsUnderline];

end;

if AComponent is TCheckBox then begin
AChangeColor := False;
TCheckBox(AComponent).Font.Style :=
TCheckBox(AComponent).Font.Style - [fsbold] - [fsUnderline];

end;

➤ Listing 1

➤ Above: Listing 2 ➤ Below: Listing 3

➤ Figure 2 ➤ Figure 3 ➤ Figure 4

unit fListing1;
interface
uses
Windows, Messages, Graphics, Classes, Controls, Forms,
CtlFocus, StdCtrls;

type
TfrmListing1 = class(TForm)
Edit1: TEdit;
Edit2: TEdit;

CtlFocus: TCtlFocus;
CheckBox1: TCheckBox;
procedure CtlFocusBeforeFocus(Sender: TObject;
const AComponent: TComponent; var ANewColor: TColor;
var AChangeColor: Boolean);

procedure CtlFocusAfterFocus(Sender: TObject;
const AComponent: TComponent; var ANewColor: TColor;
var AChangeColor: Boolean);

private
public
end;

var frmListing1: TfrmListing1;
implementation
{$R *.DFM}

procedure TfrmListing1.CtlFocusBeforeFocus(Sender: TObject;
const AComponent: TComponent; var ANewColor: TColor;
var AChangeColor: Boolean);

begin
if AComponent = Edit2 then
ANewColor := clRed

else if AComponent is TCheckBox then begin
AChangeColor := False;
TCheckBox(AComponent).Font.Style :=
TCheckBox(AComponent).Font.Style + [fsbold] +
[fsUnderline];

end;
end;
procedure TfrmListing1.CtlFocusAfterFocus(Sender: TObject;
const AComponent: TComponent; var ANewColor: TColor;
var AChangeColor: Boolean);

begin
if AComponent is TCheckBox then
TCheckBox(AComponent).Font.Style :=
TCheckBox(AComponent).Font.Style - [fsbold] -
[fsUnderline];

end;
end.

54 The Delphi Magazine Issue 60

Notice how we make sure that
the event is fired due to a control
on the form to which the event han-
dler belongs. Also note how we call
the original event handler.

Finally we must preserve the
chain of handlers by re-hooking
the original when our control is
destroyed:

Screen.OnActiveControlChange :=
FSuperOnControlChangeEvent;

The above method works, but
since many event handlers may be
invoked each time focus is shifted
and we are hooking into public
event handlers I am uneasy. Let’s
check out an alternative approach.
The following is a more conven-
tional method, but perhaps the
techniques are not as well known.

The VCL sends internal
messages, known as component
messages. They are defined in Con-
trols.pas and are identified with
the CM_ prefix. They are generated
as the result of windows messages
(WM_) and user activities. Most of
the time we need not be concerned
with these messages, because
Delphi handles the details for us.
CM_ messages are barely discussed
in the Delphi documentation, but I
learned about them from the excel-
lent book Secrets of Delphi 2 and
from the VCL source code.

It just so happens that there is a
CM_FOCUSCHANGED message, which is
fired whenever focus is changed
from control to control.

TCustomForm, the base class of
TForm, knows when focus has
changed. It sends a CM_FOCUS-
CHANGED message to itself that in

turn directs it to send a
CM_FOCUSCHANGED to all its child con-
trols. The message parameter is of
type TCMFocusChanged. It has a
Sender attribute of type TWinCon-
trol that references the currently
focused control.

The pattern of a container con-
trol sending a message to itself and
then to all of its children is
common in the VCL. It is an elegant
way for the container to inform all
of its children that something has
changed. Take a look at the Default
Button sidebar for an example.

It is easy to whip up a quick
proof-of-concept: add the declara-
tion shown in Listing 5 to your form
class. The name of the method is
not important. I have applied the
same convention used in the VCL
source and by most developers.
The code snippet in Listing 6
updates the form’s caption with
the control name.

Be sure to include the inherited
statement. This ensures that

the CM_FOCUSCHANGED message
reaches all of its handlers.

There is a problem with the
CM_FOCUSCHANGED message that we
must overcome. The form only
sends the CM_FOCUSCHANGED event to
TWinControl descendants, thus
shutting out our TComponent
derived control. We could cheat
and descend from TWinControl, but
that’s an ugly hack.

As you might expect, there is a
clean solution. Windows develop-
ers who learned to program
directly to the Win16 and Win32
APIs know the answer: subclass
the host form. See the Windows
Subclassing 101 sidebar for a brief
overview of the technique.

The first thing we do when sub-
classing a window is to save the
current WndProc’s address. The
second step is to substitute the
new WndProc, in our case it is
named CtlFocusWndProc. This takes
place in the Create method, as
shown in Listing 8. You should
note that the form is only sub-
classed at runtime. Originally
while I was developing CtlFocus
control I forgot to do this, talk
about weird behavior in the Delphi
IDE! Let’s take a look at a slightly
simplified version of CtlFocus-
WndProc, see Listing 7. The
complete version is in Listing 8.

Remember that every message
that is sent to the host form will be
diverted through CtlFocusWndProc
so we must be as efficient as possi-
ble. As shown in Listing 7, we test

procedure TfrmScreen1.ActiveControlChange(Sender: TObject);
begin
if Screen.ActiveCustomForm = self then begin
// change focused appearance here

end;
if Assigned(FSuperOnControlChangeEvent) then
FSuperOnControlChangeEvent(Sender);

end;

TFocusForm = class(TForm)
private
procedure CMFocusChanged(var Message: TCMFocusChanged);
message CM_FOCUSCHANGED;

➤ Above: Listing 4 ➤ Below: Listing 5

procedure TFocusForm.CMFocusChanged(var Message : TCMFocusChanged);
begin
Caption := Message.Sender.Name; // Sender is a reference to current control
Inherited;

end;

➤ Listing 6

Default Button
Ever wonder how TButtons coordinate which one is the default? They do not communi-
cate directly with each other, but rather leverage the CM_FOCUSCHANGEDmessage. This
sidebar deals with runtime behavior. The Delphi form designer acts differently. The
default button is the one which responds to the Enter key. It is visually denoted with a
black border. If a button has focus it is automatically the default. If a non-TButton con-
trol has focus then the first button with its Default property set True becomes the
default. The implementation of TButton has a message handler for CM_FOCUS-
CHANGED. It checks first to see if the Sender attribute is a TButton or TButton descen-
dant. If it is then it checks to see if Sender is a reference to itself. If so it is the default
button otherwise it is not. If Sender is not a TButton then its appearance is deter-
mined by the Default property. All of this logic is accomplished in only seven lines of
code. Take a look at the StdCtrls.pas file in the \Source\VCL directory to see the imple-
mentation. You may wonder why the buttons do not coordinate this amongst them-
selves. It is poor OO design to have objects in a container send messages directly to each
other. Let the container coordinate this activity.

56 The Delphi Magazine Issue 60

to see if the message is CM_FOCUS-
CHANGED. If it is we call FocusChanged
(described a little later).

Finally, regardless of the mes-
sage type, we call the original
WndProc routine that we previously
stored a reference to in FHost-
FormWndProc. This makes sense
because we tap into the CM_FOCUS-
CHANGED event to highlight our con-
trol, but we’d better let the VCL
complete the rest of the work.

CtlFocusWndProc is not quite
complete. We need to consider the
situations where a form loses and
gains focus. CM_FOCUSCHANGED is
only sent when focus is changed
within a form. CM_ACTIVATE and CM_
DEACTIVATE, on the other hand, are
sent when the form gains/loses
focus. These are the internal mes-
sages that fire the OnActivate and
OnDeactivate events.

The FocusChanged method is the
central starting point for modifying
the controls appearance. If Enabled
is True it simply calls Restore-
CtrlState then AlterCtrlState.
Note that I didn’t make this method
virtual. It does not perform any key
functionality. On the other hand,
AlterCtrlState and RestoreCtrl-
State are declared virtual.

AlterCtrlState is responsible for
changing the appearance of a
newly focused control. Before it
does anything it triggers the On-
BeforeFocus event. As discussed
above, this gives the opportunity
to customize CtlFocus’s behavior:

clFocusedColor :=
FFocusedColor;

bChangeColor := True;
DoBeforeFocus(bChangeColor,
clFocusedColor);

DoBeforeFocus wraps the call to
OnBeforeFocus. It is best to isolate
event trigger functions to one loca-
tion. bChangeColor and clFocused-
Color may ultimately be modified
in the developer’s event handler as
show in Listing 1. The next step is
to change the color if appropriate:

if bChangeColor then
SetColorProperty(
FHostForm.ActiveControl,
FLastColor,
clFocusedColor);

The CM_FOCUSCHANGED message is
sent after the focus has been
changed, so we need to keep track
of which control just received
focus:

FLastFocusedCtrl :=
FHostForm.ActiveControl;

RestoreCtrlState is responsible
for setting the control’s appear-
ance back to its default. It is similar
to AlterCtrlState, but instead of
acting upon the active control it
refers to the control reference
saved in FLastFocusedCtrl.

The last method worth noting is
SetColorProperty, which uses RTTI
to change the color property of the
component. RTTI is a large and
complicated subject: I will briefly
describe how CtlFocus uses it.
Remember RTTI only pertains to
published class members.

The RTTI definitions and imple-
mentation can be found in the
TypInfo.pas unit. Refer to this unit
and the references at the end of the
article for more information. Unfor-
tunately, the Delphi documenta-
tion is lacking on this subject.

The first step is to make sure that
the component has a published
Color property. The GetPropInfo
procedure does this for us:

PropInfo := GetPropInfo(
AComponent.ClassInfo,
‘Color’, [tkInteger]);

The first parameter is a pointer to
the RTTI data. The second parame-
ter is the name of the property.
Case is not important but of course
spelling is. Special considerations
are required here if this control is
released in different languages.
The final parameter, which is
optional, lists the type(s) of the
parameters that we are searching
for. In our case we are looking for
TColor, actually just a subrange of a
long integer. If the result is nil then
the property does not exist, or is
not an integer type, and SetColor-
Property does nothing.

The second step is to remember
the current color so when the con-
trol loses focus in the future we can
restore it. For this we call
GetOrdProp:

ACurrentColor := TColor(
GetOrdProp(AComponent,
PropInfo));

Notice that the second parameter
is the result of the call to
GetPropInfo (GetOrdProp returns a
LongInt, typecast to a TColor).

The third and final step is to set
the color of the control by calling
SetOrdProp:

SetOrdProp(AComponent,
PropInfo, LongInt(
AFocusedColor));

The last parameter contains the
new value for the color, typecast
back to a long integer.

Final Note
I must admit there is a change to
the design that one of these days I
will redo. Perhaps some of you
proficient object oriented design-
ers picked up on it: the tight inte-
gration of changing the color can
be improved upon. In my defense,
when I was first designing CtlFocus
I wanted to get it done swiftly. The
ability to change the color plus the
flexibility of overriding on a case-
by-case basis was satisfactory.
What I describe below is more
elaborate and would have taken
considerably longer to implement.

Suppose, for example, that the
users decided that rather than
change the color they would
rather have a border displayed
around the controls? We can do it
with CtlFocus as it is designed
today but it requires overriding
the default behavior in event han-
dlers or by creating a descendant
control that overrides Alter-
CtrlState and RestoreCtrlState.

What I intend to do is factor out
the implementation parts that are
specific to changing the color and
replace it with an abstract class,
named TCtlFocusDisplay, that

procedure TCtlFocus.CtlFocusWndProc(
var Message: TMessage);

begin
if Message.Msg =
CM_FOCUSCHANGED then
FocusChanged;

FHostFormWndProc(Message);
end;

➤ Listing 7

August 2000 The Delphi Magazine 57

unit CtlFocus;
interface
uses
Messages, Classes, Graphics, Controls, Forms;

const
DEFAULT_FOCUSED_COLOR = clYellow;

type
TNotifyColorChangeEvent = procedure (Sender: TObject;
const AComponent : TComponent; var ANewColor : TColor;
var AChangeColor : Boolean) of object;

type
TCtlFocus = class(TComponent)
private
FHostForm : TCustomForm; // form containing control.
// Last control to be focused
FLastFocusedCtrl : TWinControl;
FHostFormWndProc : TWndMethod; // Host form's WndProc.
FEnabled: Boolean;
FFocusedColor: TColor;
FLastColor : TColor; // Remember the original color.
FOnAfterFocus: TNotifyColorChangeEvent;
FOnBeforeFocus: TNotifyColorChangeEvent;

protected
procedure FocusChanged;
procedure AlterCtrlState; virtual;
procedure RestoreCtrlState; virtual;
procedure SetEnabled(const Value: Boolean); virtual;
procedure SetFocusedColor(const Value: TColor); virtual;
procedure CtlFocusWndProc(var Message: TMessage);
virtual;

procedure DoBeforeFocus(var AChangeColor: Boolean;
var AFocusedColor: TColor); virtual;

procedure DoAfterFocus(var AChangeColor: Boolean;
var AFocusedColor: TColor;
const AComponent :TComponent); virtual;

function SetColorProperty(AComponent: TComponent; var
ACurrentColor: TColor; const AFocusedColor: TColor) :
Boolean; virtual;

function RunTime: Boolean; // Returns true if runtime
public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;

published
property Enabled : Boolean
read FEnabled write SetEnabled default True;

property FocusedColor : TColor read FFocusedColor
write SetFocusedColor default DEFAULT_FOCUSED_COLOR;

property OnBeforeFocus : TNotifyColorChangeEvent
read FOnBeforeFocus write FOnBeforeFocus;

property OnAfterFocus : TNotifyColorChangeEvent
read FOnAfterFocus write FOnAfterFocus;

end; { TCtlFocus }
procedure Register;

implementation
uses TypInfo;
destructor TCtlFocus.Destroy;
begin
{ Restore original WndProc. Technically only required if
CtlFocus is dynamically created and destroyed, but a
good practice to always follow. }

if RunTime then
FHostForm.WindowProc := FHostFormWndProc;

inherited Destroy;
end; { Destroy }
constructor TCtlFocus.Create(AOwner : TComponent);
begin
inherited Create(AOwner);
FHostForm := TCustomForm(AOwner);
FLastFocusedCtrl := nil;
FFocusedColor := DEFAULT_FOCUSED_COLOR;
Enabled := True;
{- Subclass the host form if it is run time. -}
if RunTime then begin
FHostFormWndProc := FHostForm.WindowProc;
FHostForm.WindowProc := CtlFocusWndProc;

end;
end; { Create }
procedure TCtlFocus.SetEnabled(const Value: Boolean);
begin
FEnabled := Value;
if FEnabled then
FocusChanged

else
RestoreCtrlState;

end; { SetEnabled }
procedure TCtlFocus.SetFocusedColor(const Value: TColor);
begin
FFocusedColor := Value;
if Enabled then
FocusChanged;

end; { SetFocusedColor }
procedure TCtlFocus.CtlFocusWndProc(var Message: TMessage);
begin
case Message.Msg of
CM_FOCUSCHANGED: // Focus has shifted within form.

FocusChanged;
CM_DEACTIVATE: // Host form is about to loose focus.
RestoreCtrlState;

CM_ACTIVATE: // Host form is about to (re)gain focus.
FocusChanged;

end; {case}
{ Pass all messages on to original WndProc. }
FHostFormWndProc(Message);

end; { CtlFocusWndProc }
procedure TCtlFocus.FocusChanged;
begin
if not Enabled then Exit;
RestoreCtrlState;
AlterCtrlState;

end; { FocusChanged }
{ Trigger OnBeforeFocus event then change color property }
procedure TCtlFocus.AlterCtrlState;
var
bChangeColor : Boolean;
clFocusedColor : TColor;

begin
clFocusedColor := FFocusedColor; // Set default color.
// Default action is to change the color.
bChangeColor := True;
// Opportunity to override default settings.
DoBeforeFocus(bChangeColor, clFocusedColor);
if bChangeColor then
SetColorProperty(FHostForm.ActiveControl, FLastColor,
clFocusedColor);

FLastFocusedCtrl := FHostForm.ActiveControl;
end; { AlterCtrlState }
{ Trigger the OnAfterFocus event then restore the color. }
procedure TCtlFocus.RestoreCtrlState;
var
bChangeColor : Boolean;
sink : TColor;

begin
if FLastFocusedCtrl <> nil then begin
// The default action is to change the color.
bChangeColor := True;
DoAfterFocus(bChangeColor,FLastColor,FLastFocusedCtrl);
if bChangeColor then
SetColorProperty(FLastFocusedCtrl, sink, FLastColor);

end;
end; { RestoreCtrlState }
{Trigger OnAfterFocus event just before control loses focus}
procedure TCtlFocus.DoAfterFocus(var AChangeColor: Boolean;
var AFocusedColor: TColor; const AComponent: TComponent);

begin
if Assigned(FOnAfterFocus) then
FOnAfterFocus(Self, AComponent, AFocusedColor,
AChangeColor);

end; { DoAfterFocus }
{Trigger OnBeforeFocus event just before control
receives focus }
procedure TCtlFocus.DoBeforeFocus(var AChangeColor: Boolean;
var AFocusedColor : TColor);

begin
if not Assigned(FHostForm.ActiveControl) then
Exit; // No active control.

if Assigned(FOnBeforeFocus) then
FOnBeforeFocus(Self, FHostForm.ActiveControl,
AFocusedColor, AChangeColor);

end; { DoBeforeFocus }
{- Set the color property of AComponent using RTTI. -}
function TCtlFocus.SetColorProperty(AComponent: TComponent;
var ACurrentColor: TColor; const AFocusedColor: TColor):
Boolean;

var
PropInfo : PPropInfo;

begin
if not Assigned(AComponent) then begin
Result := False;
Exit;

end;
PropInfo := GetPropInfo(AComponent.ClassInfo, 'Color',
[tkInteger]);

if PropInfo = nil then begin
Result := False;
Exit;

end;
Result := True;
ACurrentColor := TColor(GetOrdProp(AComponent, PropInfo));
SetOrdProp(AComponent, PropInfo, LongInt(AFocusedColor));

end; { SetColorProperty }
function TCtlFocus.RunTime: Boolean;
begin
RunTime := not (csDesigning in ComponentState);

end; { RunTime }
procedure Register;
begin
RegisterComponents('DDJ', [TCtlFocus]);

end; { Register }
end.

➤ Listing 8

58 The Delphi Magazine Issue 60

encapsulates the generic function-
ality of modifying and restoring the
focused control.

The beauty of this is that any
number of schemes may be imple-
mented without making any
changes to the core control. One
such implementation is, for exam-
ple, to change the color, another is
to draw a border. Organizations
could perhaps create their very
own TCtlFocusDisplay descen-
dants for complete flexibility.

The truly savvy object orient
designers will recognize this as the
Strategy Pattern.

Summary
With some planning and a little
knowledge of Delphi and the Win-
dows environment, implementing
components such as CtlFocus is
not really that difficult. The
CtlFocus unit is well under 300
lines of code.

My experiences have taught me
that considering the analysis and
design before implementation is a
big time saver. Even though this is
a small project, taking the time to

reflect how to create an extensible
and flexible component before
implementing it helped me to
achieve my goal faster.

I hope you enjoy using CtlFocus
as much as I did creating it.

References
The following are great books. All
of them still have great informa-
tion, even for Delphi 5:

Secrets of Delphi 2, Ray Lischner,
Waite Group Press, 1996.

Delphi Component Design,
Danny Thorpe, Addison Wesley
Developers Press, 1997.

Developing Custom Delphi 3
Components, Ray Konopka,
Coriolis Group Books, 1997.

Hart Kerbel is a contract software
architect/developer based in
Toronto, Canada. He can be
reached by email at hart.kerbel@
sympatico.ca

Windows Subclassing 101
Subclassing is a technique that allows the default behavior of a window to be modified.
Conceptually it is vaguely similar to creating a descendant class from a base class via
inheritance. The implementation is based on procedural programming techniques.
Every window has a Window Procedure, know as the WndProc, associated with it. All
messages sent to a window go through this procedure. By substituting our own
WndProc for the current one we can override the window’s behavior. The
SetWindowLong API procedure is the traditional API call used to accomplish this.

In the old days of coding in C the WndProc routine tended to be one large switch
statement. Each case was focused on a specific message. Happily Delphi nicely encapsu-
lates this in the VCL. We seldom find ourselves explicitly subclassing or coding WndProc
routines anymore. However, the VCL is architected so that if we need to get our hands
dirty it’s a snap. TControl defines the public property WindowProc of type
TWndMethod. Assigning this property a reference to another WndProc (the actual
name is not relevant) is all there is to it.

One final note: be sure to call the original WndProc routine with messages that are
not handled. Forgetting to do so will quickly cause weird and unpredictable results.

	Analysis
	Design
	Implementation
	Default Button
	Final Note
	Summary
	Windows Subclassing 101
	References

